Empirically characteristic analysis of chaotic PID controlling particle swarm optimization
نویسندگان
چکیده
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.
منابع مشابه
Bluetooth Based Chaos Synchronization Using Particle Swarm Optimization and Its Applications to Image Encryption
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to...
متن کاملChaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملResearch of Self-Tuning PID for PMSM Vector Control based on Improved KMTOA
The Permanent Magnet Synchronous Motor has been applying widely due to it’s high efficiency, high reliability, relatively low cost and low moment of inertia. However, the PMSM drives are easily affected by the uncertain factors such as the variation of motor parameters and load disturbance. In order to realize the control of the PMSM accurately, a novel adaptive chaotic kinetic molecular theory...
متن کاملSuppression of Chaotic Behavior in Duffing-holmes System using Backstepping Controller Optimized by Unified Particle Swarm Optimization Algorithm
The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the syste...
متن کاملCircuit Implementation of Coronary Artery Chaos Phenomenon and Optimal PID Synchronization Controller Design
This study aimed at the implementation and synchronization control of cardiac circuit. First, the MATLAB-Simulink was used to simulate the dynamic behavior of cardiac chaotic circuit, and simple electronic modules were used to implement the cardiac system. Then the Particle Swarm Optimization PSO was used to seek for the proportional, integral, and derivative gains of optimal PID controller, an...
متن کامل